Course title:	Quantitative principles in biological systems
Course number:	CST 5022 (Spring 2025)
Class hours:	Friday 14:20-16:55 (3 credit hours)
Class location:	E10-212

Course instructor:	Po-Yi Ho
Contact info:	poyiho@westlake.edu.cn
Office hours:	Monday 14:00-15:00
Office location:	E3-211

Course description

This course presents an integrated introduction to quantitative principles in biological systems. We explore four themes – randomness, optimization, information, and diversity – and analyze examples across a wide range of contexts. Problem sets involve the application of mathematical models and computational tools to test candidate principles and search for new ones. We aim to provide a unified approach to understand and engineer biological systems.

Prerequisites – basic working knowledge of calculus, linear algebra, statistics, and programming; basic physics, chemistry, and biology.

Week	Торіс	Assignment	
	Sensing molecules	Problem set #1	
1	Chemotaxis and random walks		
2	Chemotaxis and chemical reaction networks		
3	Problem solving session #1		
	Optimizing functions	Problem set #2	
4	Bacterial growth and optimization		
5	Gene regulation and statistical mechanics		
6	Problem solving session #2		
	Representing information	Problem set #3	
7	Morphogenesis and information theory		
8	Sequences and spin glass models		
9	Problem solving session #3		
	Evolving diversity	Problem set #4	
10	Evolution and evolutionary dynamics &		
11	Microbiomes and random matrices	Final project	
12	Problem solving session #4		
	Searching for principles		
13	Final project discussions		
14	Neural networks		
15	Final project presentations		
16	Searching for principles		

Learning objectives

- Develop numerical and physical intuition for biological systems.
- Analyze data to test and formulate quantitative principles.
- Communicate research effectively across fields and disciplines.

Course policies

- We follow a zero-tolerance policy for cheating and plagiarism.
- We expect active participation during lectures, problem sessions, and project presentations.

Assessments and grading

- Active participation 10%
- Problem sets 15% x 4
- Project report 15%
- Project presentation 15%

- <u>Learning resources</u>
 <u>Biophysics: Searching for Principles.</u> William Bialek.
 <u>Physical Biology of the Cell.</u> Rob Phillips, Jane Kondev, Julie Theriot, and Hernan Garcia.
 ... and more to be listed.