

Quantitative principles in biological systems

12. Diversity and Multi-objective Optimality in Biology

Yifan Yang, Asst. Prof., Center for Interdisciplinary Studies (CIS), Westlake University May 23rd, 2025

Chapter 14. Multi-objective Optimality in Biology

Alon (2020) 'An introduction to Systems Biology. 2nd Ed.' CRC Press

The diversity of finches on Galapagos islands inspired Darwin to develop his theory of natural selection

The classical picture of natural selection involves the fitness landscape

genotype \rightarrow phenotype \rightarrow fitness

Peter and Rosemary Grant observe the evolution of Darwin's finches in real time over 30 years

Daphne Major @ Galapagos

Finches with different beaks evolved to specialize in distinct tasks

The fitness function often involves trade-offs among multiple objectives performance at task 1

S

T

Engineers and economists use Pareto efficiency to study multi-objective optimization

 \bigotimes

Pareto improvements feat to the Pareto front, the set of all Pareto efficient solutions

Performance 1 In engineering, we choose optimal designs based on existing performances under trade-offs

Another application of Pareto optimality is the choice of research projects

Alon (2009) Mol. Cell

Alon (2009) Mol. Cell

In biology, we often observe phenotypes without knowing the performances

Ammonite fossiles

Single-cell gene expressions

Can we infer the objectives using multidimensional phenotypic data?

Yes, we can. By ParTI-ing (Pareto task inference)

Shoval et al (2012) Science Hart et al (2015) Nat. Methods

Assumption 1: Performances drop with increasing metric distances in the trait space

Archetype: Best traits for a given task

Assumption 2: Fitness is unknown function of 2 different tasks

Trait 1

 $\partial F/\partial P_i > 0$

 $F = F(P_1(\vec{T}), P_2(\vec{T}))$

Theorem: The optimal solution must fall on the line segment that connects the 2 archetypes

Trait 1

We can prove the theorem by comparing arbitrary phenotype B not on the line, with its counter part A on the line

Trait 1

A trade-off between 2 tasks predicts a line in trait space, no matter what exactly the traits are

3 tasks lead to a triangle and 4 tasks lead to a tetrahedron

k tasks will lead to a polytope with k vertices, given that trait space is at least (k-1) dimensional

We can prove that the optimal traits should be convex combination of the archetypes

$$T_{opt} = \Sigma_i w_i A_i, w_i > 0, \Sigma_i w_i = 1$$

$$\frac{dF}{dT}(T_{opt}) = 0, \frac{d^2F}{dT^2}(T_{opt}) < 0$$

 $\partial F / \partial P_i > 0$

$$\frac{dP_i}{dr_i} < 0 \qquad r_i = \|T - A_i\|$$

Consider the derivative of fitness when we move in trait space relative to the archetypes

$$\begin{aligned} \frac{dr_i}{dT} &= 2(T - A_i) \\ \frac{dF}{dT} &= \sum_i \frac{\partial F}{\partial P_i} \frac{dP_i}{dr_i} 2(T - A_i) = 0 \\ w_i &= \frac{\theta_i}{\sum_j \theta_j} > 0, \sum_i w_i = 1 \\ \theta_i &= \frac{\partial F}{\partial P_i} \frac{dP_i}{dr_i} < 0 \end{aligned}$$

If the distance is not Euclidean or the trains are transformed nonlinearly, the polytope will be deformed

Trait 1

We cantuist the polytopes to discover what the tasks are directly from phenotypic data

Trait 1

Hart et al (2015) Nat. Methods

Trait 2

Before we see some examples in biology,

Take a deep breath,

Talk to the person next to you, and ask questions.

We will start from animal evolution before moving to proteins and genes

Grant (1986) Princeton University Press

Shoval et al (2012) Science

Archetypes can last over geological timescales

$$R \sim e^{W\phi}$$

Specificity-Speed trade-off define the diversity of Rubisco in a 4 kinetic traits $S = k_{cat}K'_m/k'_{cat}K_m$

cni

111

Savir et al (2010) PNAS

ParTI can infer division of labor within a differentiated cell type

Spatial zonation k-specialist cells arises from task-performance gradients

Halpern et al (2017) Nature

3 archetypes in the mass-longevity space define the life-history trade-offs of mammals and birds

The same 3 archetypes of human culture can be inferred from linguistic/cultural diversity

Hunter-gather cultural traits

Karin and Alon (2018) BioRxiv

The first step is to determine the number of archetypes using PCHA and the elbow method

$$EV(n) = \frac{1}{N} \sum_{i=1}^{N} (1 - ||\vec{p}_i - \vec{s}_i|| / ||\vec{p}_i||)$$

$$||\vec{p}_i - \vec{s}_i|| = 0$$

$$A = 0.4$$

Principle Context Hull Analysis

NТ

Mørup & Hansen (2012) Neurocomputing

Hart et al (2015) Nat. Methods

The second step is to estimate archetype positions using unmoving algorithms

Hart et al (2015) Nat. Methods

The third step is to evaluate significance of the best-fitting polytope by calculating convex hull of shuffled data

Hart et al (2015) Nat. Methods

Last step is to determine the enriched features of each archetype

r, spatial bin along the CV/PN axis

Hart et al (2015) Nat. Methods Adler et al (2019) Cell Systems