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The diversity of finches on Galapagos islands inspired 
Darwin to develop his theory of natural selection



The classical picture of natural selection 
involves the fitness landscape
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Our first question is: What sets the expression level of a protein? Why are some proteins 
produced at a few copies per cell, others at thousands and yet others at tens or hundreds of 
thousands?

13.2  OPTIMAL EXPRESSION LEVEL OF A PROTEIN 
UNDER CONSTANT CONDITIONS

To address this question, we begin with a situation in which fitness can be precisely defined: 
bacteria that grow in a constant environment that is continually replenished. In this case, 
the fitness F is the growth rate of the cells. The number of cells, N, grows exponentially with 
time at rate F until they get too dense:

 N t N eFt( ) ( )= 0  (13.2.1)

Now, if two bacterial species with different values of F compete for growth and utilize the 
same resources, the one with higher F will outgrow the other and inherit the test tube. Thus, 
natural selection will tend to maximize F over time. This type of evolutionary process was 
elegantly described by G.F. Gause in “The Struggle for Existence” (Gause, 1934).

Fitness can help us address our question: What determines the level of expression of 
a protein? To be specific, we will consider a well-studied gene system, the lac system of 
Escherichia coli, which was mentioned in previous chapters. The lac system encodes proteins 
such as LacZ, which breaks down the sugar lactose for use as an energy and carbon source, 
and LacY, which transports lactose into the cell. When fully induced, E. coli makes about 
Z = 60,000 copies of the LacZ protein per cell. Why not 50,000 or 70,000?

Note that we ask “Why the cell makes 60,000 copies?” and not “How the cell makes 60,000 
copies?” “How” questions relate to mechanisms such as the regulatory system, the promoter 
sequence, and so on, which are well-characterized in the lac system. “Why” questions aim 
to place the system within a wider theory, in this case optimality theory.

Optimality theory predicts that the protein expression level that is selected maximizes 
the fitness function. The fitness function in this case is growth rate F as a function of the 
number of copies of the protein expressed 
in the cell, F(Z) (Figure 13.1).

In principle, F(Z) can have local 
maxima and minima (Figure 13.2). A 
journey on this fitness function can get 
stuck on the local maxima or blocked by 
impassable valleys. Random mutations 
can cause noise along this journey, as can 
sampling noise when population sizes 
are small, an effect called genetic drift. 
Therefore, it is unclear a priori whether 
evolution can reach the global maximum 
and if so, how long this might take.
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Multi-Objective 
Optimality in Biology

14.1 INTRODUCTION
So far, we considered evolution toward a single objective, such as maximizing the growth 
rate of bacteria. A single objective is appropriate for carefully controlled experiments. In 
nature, however, biological systems usually have multiple objectives. Bacteria, for example, 
need to grow quickly and also need to survive stresses. We will call such biological objectives 
‘tasks’. Multiple tasks lead to a fundamental trade-off: no design can be optimal at all tasks 
at once. There is no animal that can fly like an eagle, swim like a dolphin and run like a 
cheetah.

In this chapter, we will ask how evolution can optimize in the presence of multiple tasks. 
This is the art of optimal trade-offs. We will see that multiple tasks lead to simple geometrical 
patterns in biological data. These patterns can help us to understand the evolutionary trade-
offs at play.

14.2 THE FITNESS LANDSCAPE PICTURE FOR A SINGLE TASK
Let’s start with the classical framework for evolutionary theory, the fitness landscape picture. 
Consider the evolution of a bird’s beak. The genotype, DNA, leads to the phenotype, the 
shape of the beak, which leads to fitness, by eating seeds. The better the beak is at eating 
seeds, the more the bird will have viable chicks and grand-chicks on average, and the higher 
its fitness. It will pass its genes to the next generation. Thus

 genotype phenotype fitness→ →  (14.2.1)

Now suppose we take a ruler and measure the beak length, width, depth, curvature, and 
so on. These are called beak traits, Ti. Each beak phenotype can be represented as a point 
in a space whose axes are the traits, called trait space. We can (in principle) plot the fitness 
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Darwin’s finches in real time over 30 years
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Finches with different beaks evolved to specialize in 
distinct tasks
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of each beak in trait space, F T
!( ), where 

!
T  

is the vector of traits, resulting in a fitness 
landscape.

The fitness landscape is a multi-
dimensional version of the fitness function 
from the previous chapter. The fitness 
landscape can have hills and valleys. 
Figure 14.1 shows the contours of a fitness 
landscape as a function of two traits 
shaped as a circular hill. Natural selection 
will tend to converge to the summit of 
the fitness landscape, to the phenotype 
that maximizes fitness. Phenotypes will 
perhaps form a cloud around the peak due 
to randomizing forces.

14.3  MULTIPLE TASKS ARE CHARACTERIZED 
BY PERFORMANCE FUNCTIONS

But what if the beak needs to do two different tasks that both contribute to fitness: to crack 
seeds and to pick pollen from flowers? You can’t be optimal at two tasks with one beak. 
Cracking seeds require a beak shaped like a pair of pliers, whereas picking pollen requires 
a beak shaped like a pair of pincers (Figure 14.2). In this case, we need to modify the 
genotype → phenotype → fitness picture, and add in the notion of performances at the 
two tasks (Arnold, 1983). The genotype determines the traits of the phenotype, 

!
T , which 

determine performance at task 1 (cracking seeds) P T1

!( ) and performance at task 2 (picking 
pollen) P T2

!( ). Fitness is a function of these two performance functions: F F P T P T= ( ) ( )( )1 2

! !
,
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performanceat task
→

↗
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↘
↗

1

2
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(14.3.1)

Notably, fitness is an increasing function 
of the two performances (dF/dPi > 0): 
make a beak better at both tasks and fitness 
is sure to increase.

The precise form of the fitness function 
depends on the niche. In some niches one 
task is more important than the other, so 
that F(P1,P2) gives more weight to that 
particular task. In other niches the other 
task is more important. The precise shape 
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The fitness function often involves trade-offs among 
multiple objectives
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Multiple tasks are characterized by 
performance functions
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Engineers and economists use Pareto efficiency to 
study multi-objective optimization
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of the fitness function F in each niche is usually not known. But, as we will see below, 
conclusions can be reached that do not depend on knowing the form of F.

14.4  PARETO OPTIMALITY IN PERFORMANCE SPACE
So which beak shapes will evolve under the trade-off 
between these two tasks? Engineers routinely need to solve 
this type of problem. They use an approach called Pareto 
optimality. Suppose that you want to design a car. The 
design specifications require performance at two tasks, say 
acceleration (time from 0 to 100 km/h) and fuel economy 
(say km/liter). You take all possible designs, and plot them 
according to their performance at the two tasks. In this 
plot, whose axes are the two performances, each design is 
a point in performance space.

Now consider a design B. If there exists a design A that 
is better than B at both tasks (has higher performance at 
both tasks), we erase design B (Figure 14.3). We say that B 
is dominated by A. Erasing in this way all points which are 
dominated by another point, we remain with the Pareto 
front (Figure 14.4). It is the set of designs that cannot be 
simultaneously improved at both tasks. This front is what 
engineers care about.

Which design from the front you choose is based on 
the market niche of the car: a family car requires better 
economy at expense of acceleration, and a sports car 
requires better acceleration at the expense of economy 
(Figure 14.5).

This approach can be used to analyze biological 
circuits. For example, Adler et  al. (2017) analyzed the 
performance space of circuits that have fold-change 
detection (FCD), as mentioned in Chapter 10. They chose 
performance functions such as large response amplitude 
and fast response time, and considered circuits with 
a minimal number of interaction arrows. The Pareto 
front included only a handful of circuits. Many other 
minimal circuits did worse on at least one task, and were 
therefore not on the front. Among the few circuits on the 
Pareto front were the two circuits observed in biological 
systems, the I1-FFL and the nonlinear integral feedback 
loop discussed in Chapter 10. Thus, the Pareto front offers 
a way to understand why only a few circuit designs are 
found again and again in different systems, and most 
other circuits are not found.
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Pareto improvements lead to the Pareto front, the 
set of all Pareto efficient solutions
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In engineering, we choose optimal designs based 
on existing performances under trade-offs
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and plans. The state of mind is focused on
being rather than doing. The temptation to
start working arises, but a rule is a rule.
After 3 months (or more), a celebration
marks the beginning of the research
phase—with a well-planned project.

Taking time is not always easy. One
must be supported to resist the following
urge: ‘‘Oh, we must produce—let’s not
waste time, and start working.’’ The
author is under no illusion that everyone
is free to choose their own problems, or
has the time needed for an extended
search. Taking time can be especially
difficult when funding is insufficient and
grant deadlines approach. In such difficult
situations, nurturing is not enough, and
you need to find support and do all you
can to get into a better situation. Even
so, for many of us, dealing with the
difficulties of running a lab, taking time
to choose problems can make a huge
difference.

The Subjectivity of the Interest Axis
Let us now look in more detail on the axis
of problem interest. Who decides how to
rank the interest of problems? One of
the fundamental aspects of science is
that the interest of a problem is subjective
and personal. This subjectivity, however,
makes things confusing. The confusion
is due to the mixing of two voices—one
is a loud voice of the interests of those
around us, in conferences, in our depart-
ment, etc. The other is a faint voice in
our breast, that says, ‘‘This is interesting
to me.’’ Ranking problems with consider-
ation to the inner voice makes you more

likely to choose problems that will satisfy
you in the long term.

The inner voice can be strengthened
and guided if one is lucky enough to have
caring mentors. A scientist often needs
a supportive environment to begin to listen
to this voice. One way to help listening to
the inner voice is to ask: ‘‘If I was the only
person on earth, which of these problems
would I work on?’’ An honest answer can
help minimize compromises.

Another good sign of the inner voice are
ideas and questions that come back again
and again to your mind for months or
years. These are likely to be the basis of
good projects, more so than ideas that
have occurred to you in recent days.
Another good test: When asked to
describe our research to an acquaintance,
how does it feel to describe each project?

It is remarkable that listening to our own
idiosyncratic voice leads to better science.
It makes research self-motivated and the
routine of research more rewarding. In
science, the more you interest yourself,
the larger the probability that you will
interest your audience.

Self-Expression
What is the essence of the inner voice?
The projects that a particular researcher
finds interesting are an expression of
a personal filter, a way of perceiving the
world. This filter is associated with a set
of values: the beliefs of what is good,
beautiful, and true versus what is bad,
ugly, and false. Our unique filter is what
we bring to the table as scientists. A multi-
plicity in styles and questions, based on

the uniqueness of scientists, is the basis
of a viable and creative science.

To choose a good problem, therefore,
we need to reflect on our own world
view. And, as mentors, we can help
students in the late phases of their PhD
or in the postdoc stage to strengthen their
inner voice. A mentor can help by listening
to a student describe what they like in
science, in life outside of science, what
moment made them decide to become
scientists, and what scientific work they
admire. We sometimes begin to see
patterns in what the student is talking
about. There emerges a map of values,
in the way that deep rocks in an ocean
are discernable by the waves made on
the surface. Is this student motivated by
visual aesthetics or by abstract ideas?
By supporting the dogma or by undermin-
ing commonly held truths? Likes tech-
niques or logical proofs? Basic under-
standing or applied work? And so on.
This can help the mentor select a project
in which the student has the potential
for self-expression. As mentioned above,
when one can achieve self-expression in
science, work becomes revitalizing, self-
driven, and laden with personal meaning.
It may also have a better chance of
discovering something profound.

The Schema of Research
What happens after we choose a
problem? Before we end, I’d like to dis-
cuss the mental picture or schema we
hold of what research will look like (Fig-
ure 2). A common schema is expressed
in the way papers are written: one starts

Figure 1. The Feasibility-Interest Diagram for Choosing a Project
Two axes for choosing scientific problems: feasibility and interest.

Molecular Cell

Forum

2 Molecular Cell 35, September 25, 2009 ª2009 Elsevier Inc.

MOLCEL 3237

Please cite this article in press as: Alon, How To Choose a Good Scientific Problem, Molecular Cell (2009), doi:10.1016/j.molcel.2009.09.013

Another application of Pareto optimality is the 
choice of research projects

Alon (2009) Mol. Cell
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of a viable and creative science.

To choose a good problem, therefore,
we need to reflect on our own world
view. And, as mentors, we can help
students in the late phases of their PhD
or in the postdoc stage to strengthen their
inner voice. A mentor can help by listening
to a student describe what they like in
science, in life outside of science, what
moment made them decide to become
scientists, and what scientific work they
admire. We sometimes begin to see
patterns in what the student is talking
about. There emerges a map of values,
in the way that deep rocks in an ocean
are discernable by the waves made on
the surface. Is this student motivated by
visual aesthetics or by abstract ideas?
By supporting the dogma or by undermin-
ing commonly held truths? Likes tech-
niques or logical proofs? Basic under-
standing or applied work? And so on.
This can help the mentor select a project
in which the student has the potential
for self-expression. As mentioned above,
when one can achieve self-expression in
science, work becomes revitalizing, self-
driven, and laden with personal meaning.
It may also have a better chance of
discovering something profound.

The Schema of Research
What happens after we choose a
problem? Before we end, I’d like to dis-
cuss the mental picture or schema we
hold of what research will look like (Fig-
ure 2). A common schema is expressed
in the way papers are written: one starts

Figure 1. The Feasibility-Interest Diagram for Choosing a Project
Two axes for choosing scientific problems: feasibility and interest.
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In biology, we often observe phenotypes 
without knowing the performances

Ammonite fossiles Single-cell gene expressions



Can we infer the objectives using multi-
dimensional phenotypic data?

Yes, we can. By ParTI-ing (Pareto task 
inference)

Shoval et al (2012) Science

Hart et al (2015) Nat. Methods



Assumption 1: Performances drop with 
increasing metric distances in the trait space
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of each beak in trait space, F T
!( ), where 

!
T  

is the vector of traits, resulting in a fitness 
landscape.

The fitness landscape is a multi-
dimensional version of the fitness function 
from the previous chapter. The fitness 
landscape can have hills and valleys. 
Figure 14.1 shows the contours of a fitness 
landscape as a function of two traits 
shaped as a circular hill. Natural selection 
will tend to converge to the summit of 
the fitness landscape, to the phenotype 
that maximizes fitness. Phenotypes will 
perhaps form a cloud around the peak due 
to randomizing forces.

14.3  MULTIPLE TASKS ARE CHARACTERIZED 
BY PERFORMANCE FUNCTIONS

But what if the beak needs to do two different tasks that both contribute to fitness: to crack 
seeds and to pick pollen from flowers? You can’t be optimal at two tasks with one beak. 
Cracking seeds require a beak shaped like a pair of pliers, whereas picking pollen requires 
a beak shaped like a pair of pincers (Figure 14.2). In this case, we need to modify the 
genotype → phenotype → fitness picture, and add in the notion of performances at the 
two tasks (Arnold, 1983). The genotype determines the traits of the phenotype, 

!
T , which 

determine performance at task 1 (cracking seeds) P T1

!( ) and performance at task 2 (picking 
pollen) P T2

!( ). Fitness is a function of these two performance functions: F F P T P T= ( ) ( )( )1 2

! !
,

 

genotype phenotype
performanceat task

performanceat task
→

↗
↘

↘
↗

1

2
ffitness

 

(14.3.1)

Notably, fitness is an increasing function 
of the two performances (dF/dPi > 0): 
make a beak better at both tasks and fitness 
is sure to increase.

The precise form of the fitness function 
depends on the niche. In some niches one 
task is more important than the other, so 
that F(P1,P2) gives more weight to that 
particular task. In other niches the other 
task is more important. The precise shape 

Trait 1

Tr
ai

t 2

maximum
fitness

natural
selection

FIGURE 14.1 

FIGURE 14.2 

Archetype

Archetype: Best traits for a given task

Euclidean distance



Assumption 2: Fitness is unknown function of 2 
different tasks
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The Pareto optimality idea can also be used, in a lighthearted way, to help us understand 
how to choose scientific problems (Alon, 2009). The axes are how feasible and interesting 
the problem is.

14.5 PARETO OPTIMALITY IN TRAIT SPACE LEADS TO SIMPLE PATTERNS
This standard use of Pareto optimality requires us to define 
in advance what the tasks are. However, in many cases in 
biology we don’t know what the tasks are in advance. We 
can make an educated guess, but we can’t be sure. Thus, 
we can not directly use performance space to do Pareto 
optimality, because we don’t know what tasks to compare. 
Even if we did, we cannot evaluate the performance of 
each phenotype at each task.

Remarkably, we can still make progress, using an 
approach called Pareto task inference, or ParTI (Shoval 
et al., 2012, Hart et al., 2015). We simply plot the data in 
trait space, using all the traits that we can measure. The 
axes are the traits, and each phenotype is a point in this 
space. For example, each beak is a point in a space of traits 
such as beak width, depth, curvature, and so on.

We will now see that evolution under several tasks 
makes the data show particular geometric shapes. These 
shapes can help us discern the number of tasks, and 
even what the tasks might be. Thus, we solve the inverse 
problem of Pareto optimality, by inferring the tasks from 
the data. For example, when there are two tasks at play, the 
data will fall on a line segment (or sometimes on a slightly 
curved segment as discussed below). The two ends of the 
segment give us clues about what the tasks are.

To see where this line-segment geometry comes from, 
let’s imagine that each of the two tasks has a performance 
function, P T1

!( ) and P T2

!( ). The contours of these 
performance functions are plotted in trait space in Figure 
14.6. The peak of each performance function is a special 
phenotype, called the archetype. The archetype is the 
phenotype (trait combination) that is best at the task. If 
there was only that one task, evolution would converge to 
the archetype. Archetype 1 is the best beak for seeds, and 
archetype 2 is the best beak for pollen. Performance drops 
with distance from the archetype.

We want to find the beak shape that maximizes fitness, 
F(P1,P2), where F can be any increasing function. The surprise 
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Theorem: The optimal solution must fall on the 
line segment that connects the 2 archetypes
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is that, no matter what F is, one can prove that, under certain 
assumptions, the optimal solution must fall on the line 
segment that connects the two archetypes. The assumption 
of the theorem is that the performance functions drop with 
a metric distance from the archetype (for example, with 
Euclidean distance in Figure 14.6). But for some reason, as 
we will see when we look at data, the theorem seems to work 
well even in cases where it has no right to.

To understand why phenotypes fall on the line segment 
between the two archetypes, consider a phenotype B that 
is not on the line segment (Figure 14.7). The performance 
of B in each task is determined by its distances to the 
archetypes. There is a phenotype A on the line segment connecting the archetypes which is 
closer to both archetypes (by the triangle inequality) as shown in Figure 14.8. Phenotype A, 
therefore, has better performance at both tasks, and, therefore, higher fitness than B. In an 
evolutionary race, A would win, and we can, therefore, erase B.

Now, there was nothing special about point B, so we can erase all of the points and 
remain with the line segment between the two archetypes (Figure 14.9). This is the set of 
phenotypes that cannot be improved at both tasks at once – the Pareto front (plotted in 
trait space, not in performance space).

14.6  TWO TASKS LEAD TO A LINE SEGMENT, THREE TASKS 
TO A TRIANGLE, FOUR TO A TETRAHEDRON

Thus, a trade-off between two tasks predicts phenotypes on a line segment in trait space. 
Suppose we measure many beak traits, say 100 traits, making a 100-dimensional trait 
space. The beaks will still fall on the line segment between the two archetypes in this 
100-dimensional trait space (Figure 14.10a). Measuring any two of these traits will still show 
a line, because the projection of the line on any plane is a line (thin line in Figure 14.10a). 
Thus, it is not too important which traits you measure, as long as they have to do with the 
same tasks.
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We can prove the theorem by comparing 
arbitrary phenotype B not on the line, with its 

counter part A on the line
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The Pareto optimality idea can also be used, in a lighthearted way, to help us understand 
how to choose scientific problems (Alon, 2009). The axes are how feasible and interesting 
the problem is.

14.5 PARETO OPTIMALITY IN TRAIT SPACE LEADS TO SIMPLE PATTERNS
This standard use of Pareto optimality requires us to define 
in advance what the tasks are. However, in many cases in 
biology we don’t know what the tasks are in advance. We 
can make an educated guess, but we can’t be sure. Thus, 
we can not directly use performance space to do Pareto 
optimality, because we don’t know what tasks to compare. 
Even if we did, we cannot evaluate the performance of 
each phenotype at each task.

Remarkably, we can still make progress, using an 
approach called Pareto task inference, or ParTI (Shoval 
et al., 2012, Hart et al., 2015). We simply plot the data in 
trait space, using all the traits that we can measure. The 
axes are the traits, and each phenotype is a point in this 
space. For example, each beak is a point in a space of traits 
such as beak width, depth, curvature, and so on.

We will now see that evolution under several tasks 
makes the data show particular geometric shapes. These 
shapes can help us discern the number of tasks, and 
even what the tasks might be. Thus, we solve the inverse 
problem of Pareto optimality, by inferring the tasks from 
the data. For example, when there are two tasks at play, the 
data will fall on a line segment (or sometimes on a slightly 
curved segment as discussed below). The two ends of the 
segment give us clues about what the tasks are.

To see where this line-segment geometry comes from, 
let’s imagine that each of the two tasks has a performance 
function, P T1

!( ) and P T2

!( ). The contours of these 
performance functions are plotted in trait space in Figure 
14.6. The peak of each performance function is a special 
phenotype, called the archetype. The archetype is the 
phenotype (trait combination) that is best at the task. If 
there was only that one task, evolution would converge to 
the archetype. Archetype 1 is the best beak for seeds, and 
archetype 2 is the best beak for pollen. Performance drops 
with distance from the archetype.

We want to find the beak shape that maximizes fitness, 
F(P1,P2), where F can be any increasing function. The surprise 
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A trade-off between 2 tasks predicts a line in trait 
space, no matter what exactly the traits are
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is that, no matter what F is, one can prove that, under certain 
assumptions, the optimal solution must fall on the line 
segment that connects the two archetypes. The assumption 
of the theorem is that the performance functions drop with 
a metric distance from the archetype (for example, with 
Euclidean distance in Figure 14.6). But for some reason, as 
we will see when we look at data, the theorem seems to work 
well even in cases where it has no right to.

To understand why phenotypes fall on the line segment 
between the two archetypes, consider a phenotype B that 
is not on the line segment (Figure 14.7). The performance 
of B in each task is determined by its distances to the 
archetypes. There is a phenotype A on the line segment connecting the archetypes which is 
closer to both archetypes (by the triangle inequality) as shown in Figure 14.8. Phenotype A, 
therefore, has better performance at both tasks, and, therefore, higher fitness than B. In an 
evolutionary race, A would win, and we can, therefore, erase B.

Now, there was nothing special about point B, so we can erase all of the points and 
remain with the line segment between the two archetypes (Figure 14.9). This is the set of 
phenotypes that cannot be improved at both tasks at once – the Pareto front (plotted in 
trait space, not in performance space).

14.6  TWO TASKS LEAD TO A LINE SEGMENT, THREE TASKS 
TO A TRIANGLE, FOUR TO A TETRAHEDRON

Thus, a trade-off between two tasks predicts phenotypes on a line segment in trait space. 
Suppose we measure many beak traits, say 100 traits, making a 100-dimensional trait 
space. The beaks will still fall on the line segment between the two archetypes in this 
100-dimensional trait space (Figure 14.10a). Measuring any two of these traits will still show 
a line, because the projection of the line on any plane is a line (thin line in Figure 14.10a). 
Thus, it is not too important which traits you measure, as long as they have to do with the 
same tasks.
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3 tasks lead to a triangle and 4 tasks 
lead to a tetrahedron
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is that, no matter what F is, one can prove that, under certain 
assumptions, the optimal solution must fall on the line 
segment that connects the two archetypes. The assumption 
of the theorem is that the performance functions drop with 
a metric distance from the archetype (for example, with 
Euclidean distance in Figure 14.6). But for some reason, as 
we will see when we look at data, the theorem seems to work 
well even in cases where it has no right to.

To understand why phenotypes fall on the line segment 
between the two archetypes, consider a phenotype B that 
is not on the line segment (Figure 14.7). The performance 
of B in each task is determined by its distances to the 
archetypes. There is a phenotype A on the line segment connecting the archetypes which is 
closer to both archetypes (by the triangle inequality) as shown in Figure 14.8. Phenotype A, 
therefore, has better performance at both tasks, and, therefore, higher fitness than B. In an 
evolutionary race, A would win, and we can, therefore, erase B.

Now, there was nothing special about point B, so we can erase all of the points and 
remain with the line segment between the two archetypes (Figure 14.9). This is the set of 
phenotypes that cannot be improved at both tasks at once – the Pareto front (plotted in 
trait space, not in performance space).

14.6  TWO TASKS LEAD TO A LINE SEGMENT, THREE TASKS 
TO A TRIANGLE, FOUR TO A TETRAHEDRON

Thus, a trade-off between two tasks predicts phenotypes on a line segment in trait space. 
Suppose we measure many beak traits, say 100 traits, making a 100-dimensional trait 
space. The beaks will still fall on the line segment between the two archetypes in this 
100-dimensional trait space (Figure 14.10a). Measuring any two of these traits will still show 
a line, because the projection of the line on any plane is a line (thin line in Figure 14.10a). 
Thus, it is not too important which traits you measure, as long as they have to do with the 
same tasks.
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We can prove that the optimal traits should be 
convex combination of the archetypes
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Consider the derivative of fitness when we move 
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If the distance is not Euclidean or the trains are 
transformed nonlinearly, the polytope will be 

deformed
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If there are three tasks, we expect the optimal phenotypes to fall inside a triangle, whose three 
vertices are the three archetypes (Figure 14.10b). If there are four tasks, the phenotypes will fall 
inside a tetrahedron (Figure 14.10c). In the case of very many traits, we can use dimensionality 
reduction methods such as principal component analysis (PCA) to visualize these shapes.

In general, a trade-off between k tasks will result in a Pareto front shaped as a polytope with 
k vertices (a polytope is the generalization of a polygon or 
polyhedron to any dimension). Each vertex is an archetype 
for one of the tasks. A proof is given in Solved Exercise 14.1.

The key idea is that fitness is not just any function of 
traits F T

!( ), it is an increasing function of k performance 
functions of the traits F P T P T P Tk1 2

! ! !( ) ( ) … ( )( ), , , . The 
maxima of these performance functions define k points in 
trait space, which is a polytope. The maximum of F needs 
to be close to these k points, and hence inside the polytope.

If you make a nonlinear transformation of the traits (e.g., 
measure T2 instead of T), the polytopes will be deformed 
(Figure 14.11). Deformed shapes can also result from other 
situations, such as a non-metric decline of performance 
functions (Exercise 14.6). Even if the shapes are deformed, 
they still have sharp corners at the archetypes.

The neat use of this approach is to discover what the 
tasks are directly from biological data. The sharp corners 
(vertices) of the polytopes can help us infer the tasks: The 
phenotypes closest to a vertex should be specialists at 
something, and that something gives clues to what the 
task might be (Figure 14.12). Phenotypes near the center 
of the polytope should be generalists. This is the ParTI 
approach of inferring the tasks from the geometric shape 
of the data in trait space (Hart et al., 2015).

14.7 TRADE-OFFS IN MORPHOLOGY
Let’s see how this works in practice by looking at some data. We’ll start with animal 
morphology, and then move to proteins and gene expression. Morphology is a field that 
measures the shapes of organisms, and morphology books are full of lines called allometric 
relationships. For example, the molar teeth of rodents (the three big teeth at the back of 
the mouth called M1, M2 and M3) vary in shape between rodent species. One can plot each 
species in a trait space of the relative tooth areas, the ratios M2/M1 and M3/M1.1 These are 
dimensionless traits that normalize out the total size. In this trait space, the rodent species 
fall on a line (Figure 14.13). Most tooth configurations are not found, and thus most of the 
trait space is empty.

1 Tooth areas, the traits favored by morphologists, give straight lines. If we plotted tooth length or volume instead of area, 
the line would be curved.
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two tasks, the data should fall on a line segment, whose ends are the two vertices; for three 60 

tasks, it should fall in a triangle with three vertices and so on. Specialists at each task lie near 61 

a vertex, and generalists lie in the center of the polygon. The intuitive reason for the polygon 62 

is that any point outside of the polygon has a point inside the polygon that is closer to all 63 

vertices, and hence has better performance at all tasks and hence higher fitness. 64 

ParTI algorithms determine the best-fit polygon (line, triangle, tetrahedron, etc.) that 65 

describes the data and its vertices. The algorithm uses statistical tests for the quality of the fit 66 

to the polygon, by comparing the data to shuffled data (Methods). It thus discovers the number 67 

of tasks, and, based on the cultures closest to each vertex, provides information that can be 68 

used to infer the tasks.  69 

ParTI was used to define evolutionary tasks and tradeoffs in several biological domains, 70 

including gene expression in cells (16,17), development (18), animal morphology (19), and 71 

life-history strategies (20) (Supplementary Information 1). Due to the generality of the 72 

assumptions underlying ParTI, we reasoned that it might also apply to cultural evolution. In 73 

this case, the input data is multivariate cross-cultural trait datasets. Here we use ParTI to test 74 

hypothesis regarding adaptedness of cultural traits, and to infer the number and nature of the 75 

tasks that societies face, and which cultural traits are associated with these tasks. 76 

 77 

 78 
Figure 1. Schema of ParTI algorithm to infer tasks and trade-offs from multivariate trait data. ParTI 79 
receives as input a dataset where rows are cultures and columns are traits. ParTI tests the dimensionality of the 80 
dataset, and asks whether it is well-described by a polygon according to statistical tests. If the data indeed falls on 81 
a low-dimensional polygon, it infers its vertices. The number of vertices is equal to the number of tasks to be 82 
inferred. The cultures closest to each vertex are assumed to specialize in a certain task, and information about 83 
these cultures and the traits that make up the vertex is used to infer the task for each vertex.  84 
 85 
Methods 86 

Cross-cultural datasets. The Pulotu (21) dataset on traits of 113 Austronesian cultures, linked 87 

to a language-based family tree, was downloaded from https://pulotu.econ.mpg.de/. We used 88 
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Take a deep breath,

Before we see some examples in biology,

Talk to the person next to you, and ask 
questions.



We will start from animal evolution before moving 
to proteins and genes

Darwin’s finches
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Each rodent species is represented by a point on the line. The position on the line 
depends on what the rodent eats. Plant eaters (herbivores) are found at one end, meat eaters 
(faunivores) at the other end and omnivore generalists in the middle. This suggests a plant-
eating archetype with equally sized molars (flat molars 
with area ratios of 1:1:1), and a meat-eating archetype with 
spiky molars with area ratios of 2:1:0. The line provides a 
rule in which the area of the middle molar is the average of 
its two neighbors. This rule applies also to dinosaur teeth, 
allowing fossil hunters to infer how much meat versus 
plants a dinosaur ate.

Kavanagh et al. (2007) also perturbed the development 
of rodent teeth, by adding morphogens or by blocking 
morphogen diffusion. The perturbations changed the teeth 
proportions, but most of the the new proportions were still 
close to the line. This finding is related to the robustness of 
the developmental pathways, and to their ability to generate 
useful shapes even under perturbations, a feature called 
canalization (Chapter 12). Some perturbations, however, 
led to phenotypes far from the line, showing that the empty 
trait space is not impossible, and can be reached.

Morphological data also shows triangles. An example 
is found in the classic study of Darwin’s finches by Peter 
and Rosemary Grant (Grant, 1986). The Grants lived on a 
tiny island in the Galapagos and observed finch evolution 
over decades. They measured five traits for each finch – 
including mass, bone size and beak shape. This 5D data 
falls on a plane (the first two principal components 
explain over 90% of the variation). On this plane, the 
finches fall within a triangle (Figure 14.14). Their diet 
reveals three tasks: near the three vertices are species 
which are specialists at eating large seeds, small seeds and 
pollen/insects from cactus plants. Species in the middle 
of the triangle do a combination of these tasks.

A triangle is seen also when each data point is an ant 
from the same nest (Figure 14.15). E.O. Wilson measured 
the size of leaf-cutter ants versus the relative size of 
the gland which makes the pheromone for the ant trail 
(Wilson, 1980). He also recorded the behavior of each 
ant. There are three tasks: staying in the nest and nursing, 
soldiering and foraging. Ants fill a continuum inside the 
triangle defined by these three archetypes.

You might ask what is the functional role of the ants in 
the middle of the triangle? Why not make three clusters of 
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Archetypes can last over geological timescales

Ammonites

Kennedy (1989) Proc. Geo. Asso.
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specialists – optimal nursers, foragers and soldiers, without the generalist ants in the middle 
which are suboptimal at all tasks? Ant researchers believe that one reason for generalists is 
dynamic flexibility. Suppose the nest is attacked – there is no time to make more soldiers. 
Instead, generalist ants can be recruited to supply the needed tasks quickly. We will use this 
as a metaphor soon for division of labor between cells in an organ.

14.8 ARCHETYPES CAN LAST OVER GEOLOGICAL TIMESCALES
We can also ask whether the archetype positions in trait space move over long evolutionary 
timescales. A model system for this question is ammonites, marine creatures with detailed 
morphological data covering 350 million years of evolution. The detailed data was collected 
in part because ammonite fossils are used to date rocks.

Ammonite shells can be described in an elegant 
trait space with two parameters, as proposed by 
paleontologist David Raup (Raup, 1967; Figure 14.16). 
In this trait space, the outer shell is a logarithmic spiral, 
whose radius grows with each whorl by a factor  W, 
the whorl expansion rate. The inner shell is also a 
logarithmic spiral, with a constant ratio between the 
inner and outer shell radii, denoted D.

In this W-D trait space, ammonite shapes fill out 
a triangle (Figure 14.17). There is empty trait space, 
without ammonites, at large D and W. This empty 
trait space includes shells shaped like French horns, 
which are found in other clades, but not ammonites. 
The three archetypes at the corners of the triangle 
match the shell shapes that are optimal for three tasks: 
economy (maximal internal volume per shell material), 
swimming (lowest drag) and predator avoidance (rapid 
growth of shell diameter) (Tendler, Mayo 
and Alon, 2015).

There were three mass extinctions in 
which ammonites were wiped out except for 
a few surviving genera. For example, the blue 
dots in Figure 14.17 mark the two surviving 
genera after the Permian/Triassic extinction 
252 million years ago. Remarkably, in about 
10 million years after each extinction, 
ammonites diversified to refill essentially the 
same triangle. This suggests that tasks and 
archetypes did not move much in this case.

Only with the last extinction that wiped 
out the dinosaurs, 65 million years ago, this 
triangle-filling trick didn’t work, perhaps 

FIGURE 14.16  Adapted from 
(Kennedy, 1989).
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due to competition with mammals. There is only one surviving genus in the ammonite 
lineage, called Nautilus.

If archetypes remain relatively fixed, there remains the question of how radically new 
tasks can appear. How did novelties like vision and flight evolve, given that such tasks 
require complex organs such as eyes and wings. Organisms must somehow move out of an 
existing polytope toward a new archetype (e.g., flight performance).

Current thinking is that adaptation to a novel task arises by reuse of parts that have 
already evolved for a different task. One example is the evolution of wings from body 
appendages that served as thermal regulation devices. These appendages had selection 
pressure to grow in order to better radiate heat. When the appendages were large enough, 
they allowed the organism to glide, sparking selection pressure for aerodynamic gliding 
properties. Finally, the gliding appendages allowed rudimentary flight, and selection 
pressure worked to improve their performance as wings. This picture is called stepping-
stone evolution, because each new task is a stepping stone to the next.

14.9 TRADE-OFFS FOR PROTEINS
Let’s turn now from animals to proteins. A protein can also have multiple tasks. For example, 
Rubisco, one of the most abundant proteins in plants, is tasked with capturing CO2 from the 
air and adding it to a sugar molecule that can be used to build biomass. All of the carbon in 
our bodies comes from Rubisco that made the plant biomass that is the basis for our food.

Rubisco can be characterized by a trait space with four kinetic parameters. Two of these 
parameters are the catalytic speed kcat and affinity Km for CO2. The other two are the catalytic 
speed and affinity, ′kcat and ′Km, for the main competitor of CO2, oxygen O2. Capturing O2 
instead of CO2 is a mistake that requires energy to correct.

To study trade-offs in Rubisco, Yonatan Savir and Tsvi Tlusty compiled these four 
kinetic traits from different photosynthetic organisms (Savir et al., 2010). They found that 
the Rubiscos fall approximately on a line in the 4D trait space. Figure 14.18 shows the data 
in the space of three traits, kcat, Km and the specificity S k K k Kcat m cat m= ′ ′/ , together with 
the projections of the data on the three 
planes. At one end of the line segment 
are the fastest Rubiscos, which occur in 
organisms like corn, known as C4 plants, 
that can concentrate CO2 relative to the 
atmospheric concentration. Since these 
plants reach a high CO2 concentration 
inside their leaves, they do not need to 
worry about oxygen. At the other end are 
the slowest Rubiscos, which bind CO2 most 
strongly. These occur in organisms that do 
not concentrate CO2 and face competition 
from O2. Thus, this protein seems to evolve 
under a speed-specificity trade-off.
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Growth-survival trade-off explain the gene expression 
variation of the top 200 promoters in E. coli
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14.10 TRADE-OFFS IN GENE EXPRESSION
The ParTI approach can also be applied to gene expression. At first glance, gene expression 
in a cell might seem very different from beaks or proteins. Cells can rapidly change gene 
expression according to their needs, whereas if you are born with a beak of a certain shape, 
you are stuck with it. Still, gene expression also faces trade-offs.

Consider a brief time period, say a second, in which the cell can make say 1000 proteins. 
You can’t make proteins to optimize rapid growth and at the same time make proteins to 
optimize stress resistance. Growth and stress require very different sets of proteins. The cell 
needs to choose which protein portfolio to express based on its expectation of the future. 
Thus, the cell faces trade-offs between tasks and hence it makes sense to look for polytopes 
in gene expression data.

Indeed, gene expression of the top 200 promoters in E. coli, which make up 90% of the 
total promoter activity, falls on a line segment (Figure 14.19). Here, trait space is a space of 
gene expression, in which each axis is 
the fraction of the total promoter activity 
in the cell devoted to promoter i, with 
i = 1 … 200. At one end of the line segment 
is the growth archetype, in which gene 
expression is focused on making ribosomes 
and machinery for biomass production. At 
the other end is the survival archetype in 
which cells express stress-response genes 
(and a small number of ribosomes in order 
to restart growth when things improve).

When placed in a test tube with nutrient, 
E. coli starts out close to the growth 
archetype, and grows exponentially until it 
begins to deplete the nutrient and pollute its environment. 
It gradually slides down the line to the survival archetype 
until conditions are so bad that growth stops. E.  coli 
follows approximately the same line for different nutrients 
and conditions.

Thus, all that E. coli needs to do in a new condition is 
decide about its position on the line segment. This means 
that it needs to choose a number θ between zero and one, 
with the growth archetype at θ = 0 and stress archetype 
at θ = 1. To choose this number, E. coli uses a simple 
mechanism to put its gene expression on a line. This line-
making mechanism is based on competition between two sigma factors, proteins that bind 
RNA polymerase (RNAp) and allow it to bind sites in promoters (Figure 14.20). One factor, 
σ70, binds sites in the promoters of growth genes and the other, σS, binds promoters for 
stress-response genes.
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You can’t make proteins to optimize rapid growth and at the same time make proteins to 
optimize stress resistance. Growth and stress require very different sets of proteins. The cell 
needs to choose which protein portfolio to express based on its expectation of the future. 
Thus, the cell faces trade-offs between tasks and hence it makes sense to look for polytopes 
in gene expression data.

Indeed, gene expression of the top 200 promoters in E. coli, which make up 90% of the 
total promoter activity, falls on a line segment (Figure 14.19). Here, trait space is a space of 
gene expression, in which each axis is 
the fraction of the total promoter activity 
in the cell devoted to promoter i, with 
i = 1 … 200. At one end of the line segment 
is the growth archetype, in which gene 
expression is focused on making ribosomes 
and machinery for biomass production. At 
the other end is the survival archetype in 
which cells express stress-response genes 
(and a small number of ribosomes in order 
to restart growth when things improve).

When placed in a test tube with nutrient, 
E. coli starts out close to the growth 
archetype, and grows exponentially until it 
begins to deplete the nutrient and pollute its environment. 
It gradually slides down the line to the survival archetype 
until conditions are so bad that growth stops. E.  coli 
follows approximately the same line for different nutrients 
and conditions.

Thus, all that E. coli needs to do in a new condition is 
decide about its position on the line segment. This means 
that it needs to choose a number θ between zero and one, 
with the growth archetype at θ = 0 and stress archetype 
at θ = 1. To choose this number, E. coli uses a simple 
mechanism to put its gene expression on a line. This line-
making mechanism is based on competition between two sigma factors, proteins that bind 
RNA polymerase (RNAp) and allow it to bind sites in promoters (Figure 14.20). One factor, 
σ70, binds sites in the promoters of growth genes and the other, σS, binds promoters for 
stress-response genes.
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We re-analyzed this single-cell gene-expression dataset (Hal-
pern et al., 2017) in which about 1,500 individual liver cells
including Kupffer cells, hepatocytes, and endothelial cells were
measured using scRNA-Seq (Halpern et al., 2017). For the pur-
pose of our study, we considered only hepatocytes.We removed
cells with low expression resulting in 1,240 cells and considered
the 522 most varying genes (see STAR Methods).
The single-cell data show a broad cloud for hepatocytes and

a separated cluster for non-hepatocytes using a t-SNE repre-
sentation (Figure 3A) (Halpern et al., 2017). We plotted the he-
patocyte data in z-scored gene-expression space using the
first three principal components. We asked whether these
gene-expression data are well described by a polygon or
polyhedron with distinct vertices or instead resemble a cloud
of data with no defined edges of vertices (Hart et al., 2015).
We find that the data are well described by a tetrahedron
(p = 3 3 10!4, Figures 3B, 3C, and S3A). Fitting the data to sim-
plexes with more than four vertices did not yield new tasks.
Analyzing the data using diffusion maps yielded similar results
(Figures S3B and S3C).

Hepatocytes Show a Trade-Off between Four
Complexes of Functions
According to the theory developed above, each vertex of the tet-
rahedron is a gene-expression profile optimal for a certain task,
G"

i . To infer what these tasks might be, we analyzed the gene-
expression profiles of hepatocytes that are closest to each
vertex. We found that hepatocytes optimally trade-off four com-
plexes of tasks (Table 1).
Cells near the first archetype specialize in production and

secretion of plasma proteins such as albumin, serpins such as
Serpinc1, Serping1, and blood clotting factors such as fibrin-
ogen and Aplp2 (Tennent et al., 2007; Van Nostrand, 2016).
This archetype also shows genes for additional tasks including
glycogenolysis (G6pc) (Petersen et al., 2017).
The second archetype has the task of detoxification, with

genes such as glutamate ammonia-ligase (Glul) and the cyto-
chrome P450 gene family (e.g., Cyp2e1, Cyp1a2, Cyp2a5, and
Cyp2c37) (Watford, 2000; Zanger and Schwab, 2013). Hepato-
cytes near this archetype also specialize in bile acid production
(Akr1c6 and Abcb4) (Jez et al., 1997; Smit et al., 1993),

Figure 3. Hepatocytes Fill a 3D Tetrahedron in Gene-Expression Space, Suggesting a Trade-Off between Four Complexes of Tasks
(A) T-SNE representation of the hepatocyte (circled with a black line) and non-hepatocyte populations colored according to Cyp2f2 expression (replotted from

Halpern et al. (2017)).

(B) Hepatocyte single-cell gene-expression in the space of the first 3 PCs shows a continuum that can be enclosed by a 3D tetrahedron. At the vertices are ellipses

that indicate STD of vertex position from bootstrapping. Projections of data on the tetrahedron faces are plotted in gray. The expression of four enriched genes is

shown (green color map denotes z-scored expression).

(C) Shuffled data show amore spherical cloud compared to the real data. Ellipses at vertices indicate that the best fit tetrahedron varies widely with bootstrapping.

(D) Individual hepatocytes are colored based on their inferred position (r) along the CV/PN axis of the repeating liver unit, the liver lobule (position according to

Halpern et al. (2017)).

(E) Enriched genes show zonation along the CV/PN axis (mean in black line and STD in gray). For the third archetype (third panel) the 30% most non-monotonic

enriched genes are plotted and all enriched genes near the third archetype are considered in the inset.
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Thus, the position on the line is given by the fraction of RNAp bound to σS, namely 
θ = σS/(σS + σ70). E. coli has signaling systems that read the environment and accordingly 
produce and degrade the two sigma factors, in order to determine where the cell lies 
between the tasks of growth and survival. The coordinates of the archetypes are encoded 
in the strength of the sites for the two sigma factors in each promoter (many promoters 
have binding sites for both sigma factors). A polytope with k vertices can be achieved by a 
similar design with k competing factors.

14.11  DIVISION OF LABOR IN THE INDIVIDUAL 
CELLS THAT MAKE UP AN ORGAN

We now turn from bacteria to gene expression in human cells. Human tissues are made 
of different types of specialized cells: brains are made of neurons and livers are made of 
hepatocytes. Having different cell types for each tissue allows a useful division of labor, 
assigning metabolic tasks to the liver and thinking tasks to the brain.

What about division of labor between cells of a given type, say the hepatocyte cells in 
the liver? Recall the ants, which divide labor toward a collective goal of colony survival and 
reproduction. Are there specialists and generalists also within a cell type?

Analysis of gene expression from individual cells all from the same organ indicates that 
division of labor is widespread. Gene expression of cells of a given cell type typically falls 
in a continuum bounded inside shapes with pointy vertices (Korem et al., 2015; Adler et al., 
2019). The tasks of the cell type can thus be inferred.

For example, liver hepatocytes are famous for doing multiple functions. They 
synthesize blood proteins and other essential compounds, they detoxify the blood, get 
rid of ammonia by turning it into urea and regulate glucose levels by storing it into 
glycogen or making it from amino acids when needed (gluconeogenesis). Individual liver 
cells fill out a tetrahedron in gene expression space, where each axis is the expression 
of gene i, with i = 1 … 20,000. This tetrahedron is plotted in Figure 14.21, where each 
point is a cell, and the axes are the first three principal components of gene expression.

At the vertices of the tetrahedron are cells that specialize in four key tasks: synthesis 
of blood proteins (such as albumin), 
gluconeogenesis, detoxification and, 
surprisingly, lipid metabolism/iron 
homeostasis. Each archetype has additional 
secondary tasks, so that each specialist 
carries out a “syndrome of tasks”: for 
example, the gluconeogenesis archetype 
also produces the antioxidant glutathione.

The specialist cells have a particular 
arrangement in space across the liver 
(Halpern et al., 2017). The liver is made of 
repeating hexagonal columns called liver 
nodules, about 15 cells across. The cells that 
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ParTI can infer division of labor within a 
differentiated cell type



Adler et al (2019) Cell Systems

Spatial zonation of task-specialist cells arises from 
task-performance gradients

developed a theory of multi-task evolution in which performance
function is collective: it is a rising function of the summed perfor-
mance of all cells at several tasks. We find that a continuum of
gene expression can arise if the performance at different tasks
has spatial gradients across the tissue. In the gene-expression
space, cells fall in a polyhedron whose vertices are gene-expres-
sion profiles optimal at each task.
In the real space across the tissue, specialist cells at a task

should be in spatial positions where its performance is highest.
Tasks that do not strongly depend on spatial position are rele-
gated to middle regions of the tissue. We find evidence for a
1D continuum of specialization in the intestinal villus and in a
3D tetrahedron in gene-expression space in liver hepatocytes.
These patterns are not clearly evident in t-SNE representation
of expression data. Viewing these shapes is best seen in
z-scored gene-expression space using 2 or 3 principal
components or by using diffusion maps (van Dijk et al., 2017;
Haghverdi et al., 2015).
In both tissues, we infer trade-offs and tasks for the cells.

Individual enterocytes perform several different tasks of the
intestinal epithelium. The present analysis suggests at least
three syndromes of tasks: cell adhesion and lipid metabolism,

transport of carbohydrate and amino acids, and anti-bacterial
defense.
Individual hepatocytes are well known to perform numerous

liver tasks. The present findings suggest that some of these
tasks go together in the same cells. This can be due to a
trade-off between four complexes of liver tasks: lipidmetabolism
and iron homeostasis, detoxification and bile production, gluco-
neogenesis and glutathione production, and plasma protein
secretion. Some of these complexes have not been previously
identified as zonated tasks, such as iron homeostasis and lipid
metabolism. One possibility for why a given complex of tasks
are performed by the same cells is that the performance in these
tasks shares a similar spatial dependence fðxÞ.
The present theory suggests more generally that if all cells

are identical in terms of performance, no continuum can form
(Figures 1A–1E). For a continuum to form, there must be a
‘‘hidden variable’’ x that gives each cell a different performance
fðxÞ. Here, we think of this variable as spatial position that can
determine nutrient levels and biological signals and proximity to
pathogens, stem cell niches, and other special tissue locations
that can impact the importance of each task. In principle, other
hidden variables such as developmental time, cell age, and

Figure 4. The Theory Predicts 3D Zonation Patterns in the Liver Lobule
(A) The coordinates of the liver lobule are radial distance from the CV (r), angle from the CV/PN axis (a), and height (z).

(B–D) (B) A demonstration of 3D performance gradients for the tasks that yield a 3D tetrahedron in gene-expression space (C), and a flower-shaped continuous

zonation patterns in the tissue space, shown in two views in which the z axis is flipped (D) (color denotes gene expression, with red, blue, yellow and green

indicating specialization at tasks 1, 2, 3, and 4).

(E) This example yields similar zonation patterns along the radial axis of the lobule as in the real data (compare to Figure 3E) when averaging over a and z.
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We next examined which signalling pathways shape the global liver 
zonation profiles that our method revealed. Diffusible Wnt signals, orig-
inating at the pericentral endothelial cells, have been suggested to be of 
major importance in inducing pericentral zonation profiles2,3. We found 
that liver genes that increased in expression in Wnt-hyperactivating 
liver-specific Apc knockout (Apc-KO) mice19 were predominantly 
pericentral (810 of our 3,496 zonated genes, median peak expres-
sion at layer 1), whereas genes that decreased in Apc-KO mice had a  
significantly stronger periportal bias (193 of our 3,496 zonated genes, 
median peak expression at layer 6, Wilcoxon rank-sum, P <  10−31,  
Fig. 3d, Supplementary Table 4). Similarly, 95 of the 3,496 zonated genes 
that were shown to increase in expression upon chronic hypoxia20 were 
significantly biased towards the low-oxygenated pericentral layers, com-
pared to 45 of the zonated genes that decreased in chronic hypoxia  
(Fig. 3e, Extended Data Fig. 8a, b, P =  0.022). Thus, Wnt signalling and 
low oxygen are major factors inducing pericentral zonation profiles.

Ras signalling has been hypothesized to induce periportal zonation 
profiles21. We found that the zonation profiles of genes that increased in 
expression in Ha-ras hyperactivated tumours22 were significantly more 
periportal compared to genes that reduced in expression (P =  0.0001, 
Fig. 3f, Extended Data Fig. 8c, d). We also found that pituitary hor-
mones repress pericentral genes, as evident by the pericentral profile of 
genes that increase in hypopituitary dwarf mice23 (P =  0.0054, Fig. 3g, 
Extended Data Fig. 8e, f). Importantly, about two thirds of the zonated 
genes (2,314 out of 3,496 genes) were not predicted targets of either 
Wnt, hypoxia, Ras signalling or pituitary hormones, suggesting that 
their zonation is affected by combinatorial regulation of these factors or 
by additional, yet to be identified, morphogens or blood-borne factors.

To explore the zonation patterns of specific biological pathways, we 
analysed the KEGG database and found that 25 of the 186 KEGG path-
ways were enriched for zonated genes (hypergeometric test, q <  0.1; 

Alb

Cyp2f2

Cyp2e1

Ass1

Glul

a

b

CV

CV

CV

CV

CV 1 2 3 4 5 6 7 8 9
Lobule layer

0

0.2

0.4

0.6

0.8

1

N
or

m
al

iz
ed

 e
xp

re
ss

io
n

Glul Cyp2e1 Ass1 Alb Cyp2f2Asl

CV PN

CV

Asl

Figure 2 | A spatial barcode of zonated landmark genes. a, smFISH 
micrographs of our landmark genes. Grey dots, single mRNA; red, 
phalloidin-stained membranes. Insets show pericentral regions of the 
spatially-discordant genes Glul (top) and Ass1 (bottom), demonstrating 
the wide dynamic range of smFISH. Scale bar, 20 µ m. Micrographs are 
representative of at least 10 lobules and two mice per gene. b, Zonation 
profiles of the landmark genes. x axis is the scaled distance from the 
central vein, y axis is the max-normalized expression level. All landmark 
genes are highly significantly zonated (Kruskal–Wallis P <  10−98). Error 
bars are s.e.m., based on at least 800 cells from 10 lobules and 2 mice.

Figure 1 | Strategy for spatially resolved  
single-cell reconstruction of liver zonation.  
a, Spatial barcode of zonated landmark (Lm) genes 
measured with smFISH. b, scRNA-seq provides 
the transcriptome of thousands of mouse liver 
cells. c, Spatial barcode is used to infer the porto-
central coordinates of each cell. For example, cell 
B, containing 50 UMI of the blue Lm1, and 4 UMI 
of the red Lmn is inferred to have resided in the 
outer periportal layers. Cell A, with 2 UMI of Lm1 
and 34 UMI of Lmn is inferred to have resided in 
the inner pericentral layers. d, These coordinates 
are used to reconstruct the spatial zonation 
profiles of all liver genes. CV, central vein;  
PN, portal node.
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We next examined which signalling pathways shape the global liver 
zonation profiles that our method revealed. Diffusible Wnt signals, orig-
inating at the pericentral endothelial cells, have been suggested to be of 
major importance in inducing pericentral zonation profiles2,3. We found 
that liver genes that increased in expression in Wnt-hyperactivating 
liver-specific Apc knockout (Apc-KO) mice19 were predominantly 
pericentral (810 of our 3,496 zonated genes, median peak expres-
sion at layer 1), whereas genes that decreased in Apc-KO mice had a  
significantly stronger periportal bias (193 of our 3,496 zonated genes, 
median peak expression at layer 6, Wilcoxon rank-sum, P <  10−31,  
Fig. 3d, Supplementary Table 4). Similarly, 95 of the 3,496 zonated genes 
that were shown to increase in expression upon chronic hypoxia20 were 
significantly biased towards the low-oxygenated pericentral layers, com-
pared to 45 of the zonated genes that decreased in chronic hypoxia  
(Fig. 3e, Extended Data Fig. 8a, b, P =  0.022). Thus, Wnt signalling and 
low oxygen are major factors inducing pericentral zonation profiles.

Ras signalling has been hypothesized to induce periportal zonation 
profiles21. We found that the zonation profiles of genes that increased in 
expression in Ha-ras hyperactivated tumours22 were significantly more 
periportal compared to genes that reduced in expression (P =  0.0001, 
Fig. 3f, Extended Data Fig. 8c, d). We also found that pituitary hor-
mones repress pericentral genes, as evident by the pericentral profile of 
genes that increase in hypopituitary dwarf mice23 (P =  0.0054, Fig. 3g, 
Extended Data Fig. 8e, f). Importantly, about two thirds of the zonated 
genes (2,314 out of 3,496 genes) were not predicted targets of either 
Wnt, hypoxia, Ras signalling or pituitary hormones, suggesting that 
their zonation is affected by combinatorial regulation of these factors or 
by additional, yet to be identified, morphogens or blood-borne factors.

To explore the zonation patterns of specific biological pathways, we 
analysed the KEGG database and found that 25 of the 186 KEGG path-
ways were enriched for zonated genes (hypergeometric test, q <  0.1; 
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genes are highly significantly zonated (Kruskal–Wallis P <  10−98). Error 
bars are s.e.m., based on at least 800 cells from 10 lobules and 2 mice.

Figure 1 | Strategy for spatially resolved  
single-cell reconstruction of liver zonation.  
a, Spatial barcode of zonated landmark (Lm) genes 
measured with smFISH. b, scRNA-seq provides 
the transcriptome of thousands of mouse liver 
cells. c, Spatial barcode is used to infer the porto-
central coordinates of each cell. For example, cell 
B, containing 50 UMI of the blue Lm1, and 4 UMI 
of the red Lmn is inferred to have resided in the 
outer periportal layers. Cell A, with 2 UMI of Lm1 
and 34 UMI of Lmn is inferred to have resided in 
the inner pericentral layers. d, These coordinates 
are used to reconstruct the spatial zonation 
profiles of all liver genes. CV, central vein;  
PN, portal node.
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3 archetypes in the mass-longevity space define 
the life-history trade-offs of mammals and birds

268   ◾   An Introduction to Systems Biology

 c. Show that this requires a condition on the curvature of the performance functions 
d2Pi/dT2.

 d. Show that when both curvatures are positive, there is an empty region with no 
phenotypes.

 e. What happens when the performance functions are Gaussians that decay with 
distance from the archetype?

 f. What other reasons might explain an empty region inside a polytope. (Hint: 
Consider physical constraints on the phenotype.)

 14.10 Mass-longevity triangle (Szekely et al., 2015): Plotting the longevity of mammalian 
and bird species versus their mass shows a continuum inside a triangle-like shape 
(Figure 14.28). At the three vertices are shrews (that weigh a few grams and live 
about 2 years), elephants and whales (tens of tons, ∼100 years) and small bats (a few 
grams, ∼50 years). Near the bat archetype are mammals that live in trees and social 
mammals that live underground (e.g. naked mole rat). Flying birds are found near 
the bat archetype and walking birds near the bottom edge of the triangle. Interpret 
these findings in terms of trade-offs and tasks.

 14.11 Different modules of tasks: Suppose that an organism has two parts or modules, each 
with a different set of tasks and traits. For example, a bird has beak traits devoted to 

FIGURE 14.28 Adapted from (Szekely et al., 2015).
Szekely et al (2015) Science



The same 3 archetypes of human culture can be 
inferred from linguistic/cultural diversity

Karin and Alon (2018) BioRxiv

 145 
Figure 2. ParTI analysis of Pulotu dataset suggests three tasks. (A) Pulotu cultural traits are well described by 146 
a triangle (p<10-3) in the plain of the first two principal components. The three vertices of the triangle correspond 147 
to adaptive trait complexes for the putative tasks of mobility/exchange, resource defense and resource 148 
competition. (B) To test for statistical significance, we used the t-ratio test (15). The t-ratio is the ratio between 149 
the areas of the convex hull (pink) and the area of the minimal enclosing triangle. A t-ratio close to 1 means the 150 
data fills the triangle. Shuffled datasets, on the other hand, do not fill their enclosing triangles as tightly. (C) A 151 
consensus language tree for Austronesian languages. Cultures are color coded according to their relative distance 152 
from each vertex of the triangle. (D) A geographical map, with color coding as in C. (E) To infer tasks for each 153 
vertex, we seek traits that appear at higher frequency in the data points closest to the vertex. Such strongly enriched 154 
traits are listed. Sign (+/-) indicates positive or negative enrichment. Nine of the enriched traits are visualized on 155 
the data points, with red (yellow) corresponding to a high (low) level of the trait. For example, no myth of mans’ 156 
creation is found predominantly in cultures near the mobility/exchange vertex, whereas deified ancestor worship 157 
is frequent in cultures closest to the resource-competition vertex. 158 
 159 

ParTI analysis of the Pulotu dataset of Austronesian cultures  160 

Using ParTI analysis, we find that the distribution of traits for the Pulotu cultures is 161 

well described by a triangle (p<10-3) (Figure 2A, Supplementary Information 5). We plot this 162 

triangle in the plane of the first two principal components, which explain 20% of the variance 163 

and are significant compared to a phylogenetic null model (Methods). The triangle is populated 164 

almost uniformly by cultures. Many a-priori possible combinations of traits do not seem to 165 

occur, resulting in the empty trait-space around the triangle. Shuffled data does not fill a 166 

triangle (Figure 2B), also when taking into account phylogeny (Supplementary Information 5).  167 
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(+/-) indicates positive or negative enrichment. Six of the traits are displayed on the data distribution, with red 225 
(yellow) corresponding to a high (low) level of the trait. For example, social class distinctions are strongest close 226 
to the resource-competition vertex, whereas elaborate puberty rites occur predominantly near the resource-227 
defense vertex. 228 
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Characterization of vertices for BHG 230 

The hunter-gatherer cultures closest to the Resource-Competition vertex are the 231 

stratified societies of the North-American Pacific Northwest, with strong enrichments for 232 

prerogatives of leadership, intense and aggressive warfare and political complexity, as well as 233 

sedentism (Figure 3C). As with the Austronesian cultures, the hunter-gatherers that are the 234 

closest to the Mobility/Exchange vertex come from areas with the lowest resource density – 235 

the arctic tundra and deserts. This vertex is enriched with high mobility, low inter-group 236 

violence and low religious and political complexity. Last, the cultures closest to the Resource 237 
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Supplementary Figure 3 

The breast cancer gene expression data set is well enclosed by a tetrahedron. 

(A) Fraction of the total variance explained by the polytope as a function of the number of archetypes. Archetypes in dimension d
(=#archetypes-1) were calculated using the PCHA algorithm. Explained variance was computed. The effective number of archetypes 
can be estimated from the maximal distance between the EV and the line connecting between the first and last points. (B) 3D plot of the 
data and enclosing tetrahedron. The axes are the first three principal components, which explain 30.4% of variance. The colored 
ellipsoids represent the archetype location and error on the most varying directions. Archetype error bars are obtained by 
bootstrapping. Each ellipsoid represents 68% confidence level. The inset near each archetype shows the projection of the data on the 
plane defined by the tetrahedron’s face opposing that archetype.  
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ONLINE METHODS
Calculating the explained variance and determining the 
number of archetypes. Dimensionality of the data is first reduced 
by principal-component analysis (PCA) down to eight dimen-
sions (using 20 dimensions provides very similar results). For 
each number of archetypes n, we find the best-fit polytope using 
the PCHA algorithm12 with δ = 0. We compute the explained 
variance given by the mean relative distance of the N data points 
to the polytope  
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Here pi is the ith data point and si is the closest point to pi in the 
polytope19,23. For points inside the polytope,
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 
p si i− = 0

We seek a number of archetypes for which adding an additional 
archetype does not increase EV by much. Operationally, we  
seek the value of n at which the EV(n) curve has a bend; typically, 
the EV curve has a rapid rise with n that switches to a slower  
rise at higher values of n. The value of n at which the bend  
occurs is estimated by finding the ‘elbow’ of the curve 
(Supplementary Fig. 10).

This method for determining the data dimensionality dif-
fers from PCA. PCA can find the dimensionality of the data set 
and provides a set of orthogonal axes along which the data vary  
most. PCA, however, does not indicate whether the data lie in 
a polytope. We used PCA as a pre-step to reduce data dimen-
sionality. Using PCA is not essential, as some polytope-finding 
algorithms also work well in the full original high dimensionality  
of the data set. More subtly, the orientation of the archetypes 
does not generally align with the first principal components. This 
implies that the biological meaning of the archetypes is distinct 
from that carried by the PCA components.

Estimating archetype position. After determining the number 
of archetypes, we use a hyperspectral unmixing algorithm to find 
the archetype positions. The software includes settings that allow 
use of one of five different algorithms. To fit the data to a polytope, 
we start by performing PCA on the data (thus centering the data 
to have a zero mean), without normalizing the data by their s.d. 
(that is, without Z-scoring). For the case of n archetypes, we use 
data projected on the first n − 1 principal components (i.e., for a 
tetrahedron, we use the first three components to represent the 
data). Then we use an unmixing algorithm to fit the n-vertices 
polytope that best describes the data (see Supplementary Note 8  
and Supplementary Fig. 11 for a list of algorithms). We used 
Sisal24 for the cancer data and MVSA13 for tissues because MVSA 
does not allow outliers and thus is more appropriate for a small 
number of data points.

Archetypal analysis differs from clustering analysis and 
Gaussian mixture models (GMMs) in several aspects—namely, 
a graded score for each point according to its distance from the 
archetypes rather than a discrete assignment into clusters, and 
lower sensitivity to local dense clumps that may result from data 
sampling. For a general comparison of these approaches, see 
Mørup and Hansen12 and Supplementary Note 2.

When using unmixing algorithms such as Sisal or MVSA, the 
archetypes are usually located some distance outside of the data. 
In this case, they represent hypothetical gene expression pro-
files that, according to the theory, should correspond to optimal 
profiles for the different tasks (or to archetypal cell mixtures in 
the case of tissue heterogeneity). We computed error bars on the 
archetypes by resampling the data with replacement and com-
puting the archetypes 1,000 times (see Supplementary Note 9 
and Supplementary Fig. 12). The error in estimating the arche-
types is about 10% (s.d./mean). The s.d. values of the archetype 
positions are depicted as ellipsoids in Supplementary Figure 13  
for the mouse tissue data set and in Figure 1b for the breast  
cancer data set.

Evaluating significance of best-fit polytopes. We note that  
estimating the number of archetypes using EV curves suggests 
the number of vertices of the best-fit polytope but does not mean 
that the data are necessarily well fit by a polytope (Supplementary 
Discussion and Supplementary Fig. 14).

To estimate the statistical significance (P value) of the  
description of the data by an n-vertex polytope, we compute a 
measure for the extent that the data fill the polytope, known as 
the t-ratio. The t-ratio is defined as the ratio of the volume of 
the polytope to the volume of the convex hull of the data9. This  
ratio is usually larger than 1; the closer it is to 1, the better the 
enclosing polytope captures the shape of the data. We then gen-
erate randomized data sets where for each point, values of each 
trait are sampled independently from its ensemble of measured 
values. This preserves the distribution of values of each trait while 
eliminating correlations between traits. We calculate the t-ratios 
for each randomized data set and set the P value to be the propor-
tion of randomized sets with a t-ratio smaller than or equal to that 
of the original data.

The statistical significance of the fitted polytope depends both 
on the dimension of the data set and the number of data points. 
Generally we find that a few tens of data points are sufficient for 
preliminary analysis (data not shown).

Evaluating the enrichment of features for each archetype. We 
seek those features that are maximally enriched at the points near-
est each archetype. Each data point is associated with a value for 
each of M features. A feature can be categorical, for example, the 
PAM50 feature (a computational classification of tumor subtypes 
based on gene expression profiling) in the breast cancer data set 
that can only take specific values (basal, LumB, …). We transform 
such categorical features into Boolean features (true or false). For 
example, the PAM50 feature becomes a set of Boolean features 
(PAM50-basal, PAM50-LumB, …). Other features are continuous, 
for example, patient age. We begin by defining the density profile 
for each feature as a function of distance from the archetype. For 
this purpose, we sort points in increasing order of Euclidean dis-
tance from archetype i. We bin all points in the data set according 
to their distance from the given archetype, such that each bin has 
an equal number of points (see “Calculating the optimal bin size” 
below). We compute the enrichment of feature j in the bins of 
sorted points. For discrete features, enrichment is defined as the 
density of the feature in the bin relative to its mean density across 
all data. To calculate the significance of the enrichment in the bin 
closest to the archetype, we use the hypergeometric test.

Principle Context Hull Analysis
Hart et al (2015) Nat. Methods

Mørup & Hansen (2012) Neurocomputing

The first step is to determine the number of 
archetypes using PCHA and the elbow method
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Supplementary Figure 11 

Different algorithms result in similar positions of the archetypes. 

Breast cancer data plotted in the three first PCs space, each tissue sample is a black dot. Blue, green, red and yellow circles represent 
archetypes positions found by Sisal, MVSA, MVES and SDVMM, respectively. 

The second step is to estimate archetype 
positions using unmoving algorithms

Hart et al (2015) Nat. Methods



The third step is to evaluate significance of the 
best-fitting polytope by calculating convex hull of 

shuffled data

Hart et al (2015) Nat. Methods

We re-analyzed this single-cell gene-expression dataset (Hal-
pern et al., 2017) in which about 1,500 individual liver cells
including Kupffer cells, hepatocytes, and endothelial cells were
measured using scRNA-Seq (Halpern et al., 2017). For the pur-
pose of our study, we considered only hepatocytes.We removed
cells with low expression resulting in 1,240 cells and considered
the 522 most varying genes (see STAR Methods).
The single-cell data show a broad cloud for hepatocytes and

a separated cluster for non-hepatocytes using a t-SNE repre-
sentation (Figure 3A) (Halpern et al., 2017). We plotted the he-
patocyte data in z-scored gene-expression space using the
first three principal components. We asked whether these
gene-expression data are well described by a polygon or
polyhedron with distinct vertices or instead resemble a cloud
of data with no defined edges of vertices (Hart et al., 2015).
We find that the data are well described by a tetrahedron
(p = 3 3 10!4, Figures 3B, 3C, and S3A). Fitting the data to sim-
plexes with more than four vertices did not yield new tasks.
Analyzing the data using diffusion maps yielded similar results
(Figures S3B and S3C).

Hepatocytes Show a Trade-Off between Four
Complexes of Functions
According to the theory developed above, each vertex of the tet-
rahedron is a gene-expression profile optimal for a certain task,
G"

i . To infer what these tasks might be, we analyzed the gene-
expression profiles of hepatocytes that are closest to each
vertex. We found that hepatocytes optimally trade-off four com-
plexes of tasks (Table 1).
Cells near the first archetype specialize in production and

secretion of plasma proteins such as albumin, serpins such as
Serpinc1, Serping1, and blood clotting factors such as fibrin-
ogen and Aplp2 (Tennent et al., 2007; Van Nostrand, 2016).
This archetype also shows genes for additional tasks including
glycogenolysis (G6pc) (Petersen et al., 2017).
The second archetype has the task of detoxification, with

genes such as glutamate ammonia-ligase (Glul) and the cyto-
chrome P450 gene family (e.g., Cyp2e1, Cyp1a2, Cyp2a5, and
Cyp2c37) (Watford, 2000; Zanger and Schwab, 2013). Hepato-
cytes near this archetype also specialize in bile acid production
(Akr1c6 and Abcb4) (Jez et al., 1997; Smit et al., 1993),

Figure 3. Hepatocytes Fill a 3D Tetrahedron in Gene-Expression Space, Suggesting a Trade-Off between Four Complexes of Tasks
(A) T-SNE representation of the hepatocyte (circled with a black line) and non-hepatocyte populations colored according to Cyp2f2 expression (replotted from

Halpern et al. (2017)).

(B) Hepatocyte single-cell gene-expression in the space of the first 3 PCs shows a continuum that can be enclosed by a 3D tetrahedron. At the vertices are ellipses

that indicate STD of vertex position from bootstrapping. Projections of data on the tetrahedron faces are plotted in gray. The expression of four enriched genes is

shown (green color map denotes z-scored expression).

(C) Shuffled data show amore spherical cloud compared to the real data. Ellipses at vertices indicate that the best fit tetrahedron varies widely with bootstrapping.

(D) Individual hepatocytes are colored based on their inferred position (r) along the CV/PN axis of the repeating liver unit, the liver lobule (position according to

Halpern et al. (2017)).

(E) Enriched genes show zonation along the CV/PN axis (mean in black line and STD in gray). For the third archetype (third panel) the 30% most non-monotonic

enriched genes are plotted and all enriched genes near the third archetype are considered in the inset.
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Last step is to determine the enriched features of 
each archetype

Adler et al (2019) Cell Systems
Hart et al (2015) Nat. Methods




