Quantitative principles in biological systems

11. Microbiomes and random matrix theory

Spring 2025

How do organisms interact?
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How do organisms interact?
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Gut microbiome
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Oral microbiome
Gary Borisy lab

Microbiomes will be our model system for diversity.
Microbiome|{

100 Trillion

Microbiome
Ireland

The microbiome is more

medically accessible
and manipulable than the
human genome

- 90 %

Vllili Di(l(n

2.5

® i @\ﬁ

>10, 000

il i
Gltractis you have x !




Microbiomes are variable across hosts and stable over time.
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An influential one-liner... diversity vs stability

Approximate complexity by randomness 4;;~N(0,5?)
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Will a Large Complex System
be Stable?

Gardner and Ashby* have suggested that large complex systems
which are assembled (connected) at random may be expected
to be stable up to a certain critical level of connectance, and
then, as this increases, to suddenly become unstable. Their
conclusions were based on the trend of computer studies of
systems with 4, 7 and 10 variables,

Here 1 complement Gardner and Ashby’s work with an
analytical investigation of such systems in the limit when the
number of variables is large. The sharp transition from
stability to instability which was the essential feature of their
paper is confirmed, and I go further to see how this critical
transition point scales with the number of variables # in the
system, and with the average connectance C and interaction
magnitude o between the various variables. The object is
to clarify the relation between stability and complexity in
ecological systems with many interacting species, and some
conclusions bearing on this question are drawn from the model,
But, just as in Gardner and Ashby’s work, the formal develop-
ment of the problem is a general one, and thus applies to the
wide range of contexts spelled out by these authors.

Specifically, consider a system with » variables (in an
ecological application these are the populations of the n
interacting species) which in general may obey some quite
nonlinear set of first-order differential equations. The stability
of the possible equilibrium or time-independent configurations
of such a system may be studied by Taylor-expanding in the
neighbourhood of the equilibrium point, so that the stability
of the possible equilibrium is characterized by the equation

dx/dr=Ax 1)

Here in an ecological context x is the #x 1 column vector of
the disturbed populations x;, and the »x » interaction matrix
A has elements @y, which characterize the effect of species &
on species j near equilibrium?3. A diagram of the trophic
web immediately determines which aj, are zero (no web link),
and the type of interaction determines the sign and magnitude
of aj.




The gut microbiome is a great model system.
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Most species inhibited each other via resource competition.
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Another influential one-liner... competitive exclusion “principle”

Number of coexisting species < Number of resources
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Themes and perspectives

4 August 1972, Volume 177, Number 4047

SCIENCE

More Is Different

Broken symmetry and the nature of

the hierarchical structure of science.

P. W. Anderson

less relevance they seem to have to the
very real problems of the rest of sci-
ence, much less to those of society.

The constructionist hypothesis breaks
down when confronted with the twin
difficulties of scale and complexity. The
behavior of large and complex aggre-
gates of elementary particles, it turns
out, is not to be understood in terms
of a simple extrapolation of the prop-
erties of a few particles. Instead, at
each level of complexity entirely new
properties appear, and the understand-
ing of the new behaviors requires re-
search which I think is as fundamental
in its nature as any other. That is, it




Validate understanding by predicting community assembly:
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Disentangle interaction mechanisms: pH-mediated inhibition.
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Disentangle interaction mechanisms: pH-mediated inhibition.
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If random =+ typical, then how to understand complexity?
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Species abundance is more variable than gene family abundance.
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Hypothesis: Less variability = More selection

The Human Microbiome Project Consortium. Nature (2012)

In a simple ecosystem, metabolic selection = reduced variability.
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Statistical averaging reduces functional variability, even without selection.
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Surprises again
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Summary

- More is different, and typical may or may not be well approximated as random.

Hallatschek et al. PNAS (2007)
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