

/llabi	s	
Week	Торіс	
	Sensing molecules	
1	Chemotaxis and random walks	
2	Chemotaxis and chemical reaction networks	
3	Problem solving session #1	
	Optimizing growth	
4	Bacterial growth and optimization	
5	Gene regulation and statistical mechanics	
6	Problem solving session #2	
	Representing information	– – → Hopfield again –
7	Morphogenesis and information theory	Kinetic proofreading
8	Sequences and spin glass models	ranolo prochodaling
9	Problem solving session #3	
	Evolving diversity	
10	Evolution and evolutionary dynamics	
11	Microbiomes and random matrix theory	nandemic strain
12	Problem solving session #4	
	Searching for principles	
13	Final project discussions	
14	Neural networks	→ Hopfield networks –
15	Final project presentations	2024 Nobel in physics
16	Searching for principles	

S	Syllabus				
	Week	Торіс	Assignment		
		Sensing molecules	Problem set #1	What Downant orpoto 1	
	1	Chemotaxis and random walks		The summer and	
	2	Chemotaxis and chemical reaction networks		I to not understand. To	
	3	Problem solving session #1		J	
		Optimizing growth	Problem set #2	The way have to solve livery	
	4	Bacterial growth and optimization		A more how to record the	
	5	Gene regulation and statistical mechanics		broklow that has been solved	
	6	Problem solving session #2			
		Representing information	Problem set #3		
	7	Morphogenesis and information theory			
	8	Sequences and spin glass models			
	9	Problem solving session #3			
		Evolving diversity	Problem set #4		
	10	Evolution and evolutionary dynamics	&		
	11	Microbiomes and random matrix theory	Final project		
	12	Problem solving session #4			
		Searching for principles			
	13	Final project discussions			
	14	Neural networks			
	15	Final project presentations			
	16	Searching for principles			

Syllabus					
	Week	Τορίς			
		Sensing molecules			
	1	Chemotaxis and random walks			
	2	Chemotaxis and chemical reaction networks			
	3	Problem solving session #1	Learning goals –		
		Optimizing growth			
	4	Bacterial growth and optimization	1 Biological systems follow		
	5	Gene regulation and statistical mechanics			
	6	Problem solving session #2	quantitative principles.		
		Representing information			
	7	Morphogenesis and information theory	2 Interdisciplinery research is more		
	8	Sequences and spin glass models			
	9	Problem solving session #3	than mix and match.		
		Evolving diversity			
	10	Evolution and evolutionary dynamics	2 Ma con de itl		
	11	Microbiomes and random matrix theory	3. We can do lu		
	12	Problem solving session #4			
		Searching for principles			
	13	Final project discussions			
	14	Neural networks			
	15	Final project presentations			
	16	Searching for principles			

Lauga. Annu Rev Fluid Mech (2016)

Themes and perspectives

Week	Topic		
	Sensing molecules		
1	Chemotaxis and random walks		
2	Chemotaxis and chemical reaction networks		
3	Problem solving session #1		
	Optimizing growth		
4	Bacterial growth and optimization		
5	Gene regulation and statistical mechanics		
6	Problem solving session #2		
	Representing information		
7	Morphogenesis and information theory		
8	Sequences and spin glass models		
9	Problem solving session #3		
	Evolving diversity		
10	Evolution and evolutionary dynamics		
11	Microbiomes and random matrix theory		
12	Problem solving session #4		
	Searching for principles		
13	Final project discussions		
14	Neural networks		
15	Final project presentations		
16	Searching for principles		

- → What problems are biological systems trying to solve and how?
- → How do biological systems navigate parameter space?
- → How do biological systems represent information?
- → How does biological diversity emerge and persist?