Quantitative principles in biological systems

1. Chemotaxis and random walks

Spring 2025

What is surprising about biology?

Complex, diverse, evolved, functional, ...

What are the quantitative principles
governing biological systems?
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Bacterial chemotaxis will be our introduction to quantitative principles.

Numbers rule —
Size ~1 um

Speed ~20 um/s (!)

Lauga. Annu Rev Fluid Mech (2016)




Single-cell trajectories look like random walks.

The Problem of the Random Walk.

Can any of your readers refer me to a work wherein
I should find a solution of the following problem, or fail-
ing the knowledge of any existing solution provide me
with an original one? I should be extremely grateful for
aid in the matter.

A man starts from a point O and walks ! yards in a
straight line; he then turns through any angle whatever
and walks another I yards in a second straight line. He
repeats this process n times. I require the probability that
after these n stretches he is at a distance between 7 and
7+ 3 from his starting point, O.

The problem is one of considerable interest, but I have
only succeeded in obtaining an integrated solution for two
stretches. 1 think, however, that a soiution ought to be
found, if only in the form of a series in powers of 1/n,
when n is large. KARL PEARSON.

The Gables, East Ilsley, Berks.
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Pearson. Nature (1905)
Berg and Brown. Nature (1972)

Consider a simple 1D random walk.

At each time step, take a step left or right with equal probability.
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Consider a simple 1D random walk.

At each time step, take a step left or right with equal probability.
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From random walks to diffusion.
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Einstein. Ann Phys (1905)
Wikipedia




From random walks to diffusion.

50um

Lab frame

X
X

D =~ 100 um?/s D =~ 1um?/s

Tavadodd et al. Eur Phys J E (2011)
Berg and Brown. Nature (1972)

Bacteria live in low Reynolds number.

Numbers rule —
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Reynolds number Re =
(density*speed*length) / (viscosity 1)

Bacteria can’t coast!

Purcell. Am J Phys (1976)
Lauga. Annu Rev Fluid Mech (2016)




Bacteria live in low Reynolds number.
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Reynolds number Re =
(density*speed*length) / (viscosity 1)

Bacteria can’t coast!

Purcell. Am J Phys (1976)
Lauga. Annu Rev Fluid Mech (2016)

Run and tumble, counterclockwise and clockwise
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David Goodsell. PDB (2024)
Lauga. Annu Rev Fluid Mech (2016)




Bacterial chemotaxis will be our model system for sensing.

Time:0s

Gradient of attractant

- How to measure gradients?
- Control which components of the process?

Yang Bai et al. eLife (2021)
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How precise can cells sense concentration levels?

Concentration
&

Random walks
with diffusion
constant
D

Bialek

Equilibration time
t,=a’/D

-~

Mean number
of molecules
N=cd’

What are typical values of ¢ and D?
c=1nM — 1 molecule per cell
D ~ 10 um?/s — 10-' second per cell

What is the precision of counting n molecules?
Poisson process again!

(ny=N
(n?) =N
n~N++N

How many molecules are counted over time?
(counting time 1)/ t; * N ~ Dact
74: time to “renew” sampled volume

1
vDact
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Relative error TC =

How precise can cells sense concentration levels?

Concentration
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Numbers rule —

Diffusion limited rate Dac = 500 s’
— Relative error % > 3% after 1 s.

Measurable gradient across the length of a cell
cannot be smaller than %j—; ~ 30 mm-"

... but actual gradients much shallower
Must measure temporal gradients!

Runs last 1 s at 20 um/s

... measurable gradient is now ~ 1 mm-'.

Why not measure even longer?




How precise can cells sense concentration levels?

Numbers rule —

CheC497

_ Diffusion limited rate Dac =~ 500 s™!
Nonch i an . A
Jippehemotactic mutant , - Relative error TC > 3% after 1 s.

1 run
Mean speed 31.3 um/s

s ' Measurable gradient across the length of a cell
' cannot be smaller than %j—; ~ 30 mm™’

50pm

... but actual gradients much shallower

Must measure temporal gradients!
Runs last 1 s at 20 um/s
... measurable gradient is now ~ 1 mm-'.

Why not measure even longer?
Rotational diffusion.

Berg and Brown. Nature (1972)

Bacteria measure temporal gradients.
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Summary

- Numbers provide intuitions for
understanding biological systems.

- Bacterial chemotaxis is a stochastic
process that senses and adapts to single

molecules.
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Themes and perspectives

A personal take on science and society

World view

Biology must generate

ideas aswell as data

By Paul Nurse

Datashould be ameans to knowledge,
not an end in themselves.

ccepting aNobel prize nearly two decades ago,

my old friend Sydney Brenner had a warning

for biology. “We are drowning in a sea of data

and starving for knowledge,” he said. That

admonishment, from one of the founders of
molecular biology, who established the nematode worm
Caenorhabditis elegans as amodel organism, is even more
relevant to biology today.

Rather often, I go to a research talk and feel drowned
indata. Some speakers seem to think they must unleash
atsunami of data if they are to be taken seriously. The
framing is neglected, along with why the data are being

dd

Itwould have
been a pity
ifDarwin

had stopped
thinking
after
describing
the shapes
and sizes of
finchbeaks.”

To refocus on that goal, we must improve our working
processes, placing a greater emphasis on theory and
shifting our research culture.

How? Embed engineers and experimentalists who are
developing new technologies and methods deeply into
the biological problems. It is through deep familiarity
with the biology — not simply a drive to collect more and
more data — thatimportant questions will be asked. Such
questions will sustain the investigators’ passion to keep
probing data until patterns and knowledge emerge, and
will also influence the data that are gathered.

There are other necessary steps. Develop appropri-
ate analytical tools, including programs for data mining
and machine learning. Make certain that data are usable,
properly annotated and openly shared. Model the
molecularand cellular componentsinvolvedinabiological




Themes and perspectives

Week Topic

1
2
3

[o)Jé) F N

© 0 N

10
11
12

13

15
16

Sensing molecules

Chemotaxis and random walks
Chemotaxis and chemical reaction networks
Problem solving session #1
Optimizing growth

Bacterial growth and optimization
Gene regulation and statistical mechanics
Problem solving session #2
Representing information
Morphogenesis and information theory
Sequences and spin glass models
Problem solving session #3

Evolving diversity

Evolution and evolutionary dynamics
Microbiomes and random matrix theory
Problem solving session #4

Searching for principles

Final project discussions
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Searching for principles

What problems are biological
systems trying to solve and how?

How do biological systems
navigate parameter space?

How do biological systems
represent information?

How does biological diversity
emerge and persist?




